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Abstract
Our aim in this paper is to study a Cahn–Hilliard model with a symport term. This
equation is proposed to model some energy mechanisms (e.g., lactate) in glial cells.
The main difficulty is to prove the existence of a biologically relevant solution. This
is achieved by considering a modified equation and taking a logarithmic nonlinear
term. A second difficulty is to prove additional regularity on the solutions which is
essential to prove a strict separation from the pure states 0 and 1 in one and two space
dimensions. We also consider a second model, based on the Cahn–Hilliard–Oono
equation.
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1 Introduction

We are interested in this paper in the analysis of PDEs models for energy mechanisms
in the brain.
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ODEs of the form

x ′ + kx

k′ + x
= J (x, t), k, k′ > 0, J ≥ 0,

are often relevant in such situations.We canmention, e.g., lactate or oxygen exchanges
in glial cells (see [2,9,32]). Such ODEs were also proposed in [18] to model brain
metabolites concentrations in the circadian rhythm. Here, kx

k′+x is known as symport
term and accounts for exchanges, e.g., from a cell to its environment (see [19]).

Now, in all these mechanisms, one should also account for spatial diffusion, having
in mind different zones in the brain or in cells. In particular, we studied in [24] (see
also [17]) a reaction–diffusion equation of the form

∂u

∂t
− �u + ku

k′ + u
= J (x, t)

(we can more generally consider a source term of the form J = J (u, x, t)). Such an
equation also appears in models in [8,15,23].

In this paper, we consider instead a Cahn–Hilliard type fourth-order equation,
namely,

∂u

∂t
+ �2u − � f (u) + ku

k′ + u
= J (x, t).

The original Cahn–Hilliard equation,

∂u

∂t
+ �2u − � f (u) = 0,

was initially proposed to model phase separation processes in binary alloys (see [4,5]).
Since then, this equation, or some of its variants, were successfully applied to many
other applications than just phase separation in alloys. We can mention, for instance,
dealloying (this can be observed in corrosion processes; see [11]), population dynamics
(see [7]), tumor growth (see [1,12,13,20,26]), bacterial films (see [21]), thin films (see
[31]), chemistry (see [36]), image processing (see [3,6,10]) and even astronomy, with
the rings of Saturn (see [35]), and ecology (for instance, the clustering of mussels
can be perfectly well described by the Cahn–Hilliard equation; see [22]). We refer the
interested reader to [25,29] for reviews on the Cahn–Hilliard equation and some of its
variants, as well as their mathematical analysis.

In view of the energy metabolism in the brain and in glial cells, one interest in
considering a Cahn–Hilliard type model is that, in addition to spatial diffusion, we can
also account for the phase separation process (having again in mind different zones in
the brain or in cells in which, typically, the concentration of a metabolite may be high
or very low) and clustering effects.

Compared to the reaction–diffusion model, one essential difficulty is to prove that
the order parameter u remains nonnegative; recall indeed that u generally corresponds
to a concentration (of a metabolite) and should belong to [0, 1]. This is due to the fact
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that we no longer have the maximum principle/comparison principle. Also note that
the symport term ku

k′+u can become singular when u is negative.
The original Cahn–Hilliard equation usually is associated with a regular (typically,

cubic) nonlinear term. However, as we will see below, the order parameter can indeed
become negative in that case, preventing us from proving a global in time existence
result. To overcome this, we instead consider a logarithmic nonlinear term f . Actually,
as far as the original Cahn–Hilliard equation is concerned, a logarithmic nonlinear
term is the one which is thermodynamically relevant; it is thus natural to also consider
such a nonlinear term for our model. In addition, we consider a modified problem to
avoid the symport term to become singular. A second major difficulty is to prove a
strict separation property of the order parameter from the singular points of f . This
necessitates further regularity on the time derivative of u which is in general not known
for variants of the Cahn–Hilliard equation of the form

∂u

∂t
+ �2u − � f (u) + h(x, u) = 0.

Surprisingly, this is already challenging for the simple linear term h(x, s) = αs,
α > 0, when considering logarithmic nonlinear terms f (see [14]); in that case, one
has the Cahn–Hilliard–Oono equation, proposed in [30] to account for nonlocal effects
in phase separation processes. In our case, we are able to prove such a regularity under
conditions on the parameters.

This paper is organized as follows. We first define the mathematical setting for
our problem. We then prove the existence of a local in time biologically relevant
solution which is global under (unfortunately rather restrictive) conditions on the
parameters. We next prove further regularity on the solutions, allowing us to prove
the strict separation in one and two space dimensions. We finally consider a second
model, based on the Cahn–Hilliard–Oono equation, and obtain similar results, this
time under more realistic conditions on the parameters.

2 Setting of the Problem

We assume in what follows that J is a constant. We will however discuss the extension
of some of our results to more general functions J = J (x, t).

We consider the following initial and boundary value problem, in a bounded and
regular domain � of Rn , n = 1, 2 or 3, with boundary �:

∂u

∂t
+ �2u − � f (u) + ku

k′ + u
= J , k, k′ > 0, (2.1)

∂u

∂ν
= ∂�u

∂ν
= 0 on �, (2.2)

u|t=0 = u0. (2.3)

Remark 2.1 As mentioned in the introduction, u corresponds to a concentration. It is
thus important to ensure that this quantity takes values between 0 and 1. Furthermore,
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as mentioned in the introduction, one usually takes regular (typically, cubic) nonlinear
terms with Cahn–Hilliard type models. Unfortunately, such nonlinear terms do not
ensure biologically relevant solutions. Let us indeed take J = 0, f (s) = (s − 1

2 )
3 −

(s − 1
2 ) and consider the one-dimentional equation

ut + uxxxx − ( f (u))xx + ku

k′ + u
= 0,

with obvious notation. Let us now take u0 smooth enough satisfying the Neumann
boundary conditions and such that u0 ∈ [0, 1] and u0(x) = (x − 1

2 )
4 in a neighborhood

of 1
2 . Thus, we easily see that u0(

1
2 ) = u′

0(
1
2 ) = u′′

0(
1
2 ) = 0, so that ( f (u))xx (

1
2 , 0) =

0, and u(iv)
0 ( 12 ) = 24. It thus follows that ut (

1
2 , 0) = −24 and

u(
1

2
, t) = −24t + o(t),

for t close to 0. This yields that u can indeed become negative, which is problematic
here, as the equation may become singular if u approaches −k′.

In view of the above remark, we take f logarithmic, namely,

f (s) = −c0(s − 1

2
) + θ ln

s

1 − s
, c0, θ > 0, s ∈ (0, 1).

Remark 2.2 In the case of the originalCahn–Hilliard equation, one further takes θ < c0
4

to ensure that f is the derivative of a double-well potential F and that phase separation
can occur.

We can note that f is of class C∞ and satisfies

f ′ ≥ −c0. (2.4)

Furthermore, the following holds, for s, m ∈ (0, 1):

f (s)(s − m) ≥ cm(| f (s)| + F(s)) − c′
m, cm > 0, c′

m ≥ 0, (2.5)

where F(s) = ∫ s
1
2

F(ξ) dξ and cm and c′
m depend continuously on m. We refer the

reader to, e.g., [25] for the proof. Note that, there, the order parameter u takes values
in (−1, 1); we can come back to (0, 1) by a proper rescaling.

In order to prove the existence of solutions, we consider the following modified
problem:

∂u

∂t
+ �2u − � f (u) + g(u) = J , (2.6)

∂u

∂ν
= ∂�u

∂ν
= 0 on �, (2.7)

u|t=0 = u0, (2.8)
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where g(s) = ks
k′+|s| . Note that g is of class C1, with g′(s) = kk′

(k′+|s|)2 , so that g
is (strictly) monotone increasing and maps R onto [−k, k]. Here, the only difficulty
occurs at s = 0 and note that

g(s) − g(0)

s
= k

k′ + |s| → k

k′ as s → 0.

Furthermore, if s > 0, then

g′(s) = kk′

(k′ + s)2
= kk′

(k′ + |s|)2 → k

k′ as s → 0+,

while, if s < 0,

g′(s) = kk′

(k′ − s)2
= kk′

(k′ + |s|)2 → k

k′ as s → 0−.

Notation

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also

set ‖ · ‖−1 = ‖(−�)− 1
2 · ‖, where (−�)−1 denotes the inverse of the minus Laplace

operator associated with Neumann boundary conditions and acting on functions with
null spatial average. More generally, we denote by ‖ · ‖X the norm on the Banach
space X .

We set 〈·〉 = 1
Vol(�)

∫
�

· dx , being understood that, if v ∈ H−1(�) = H1(�)′, then
〈v〉 = 1

Vol(�)
〈v, 1〉H−1(�),H1(�). We also set, whenever this makes sense, v = v −〈v〉.

We note that

v 
→ (‖v‖2−1 + 〈v〉2) 1
2 , v 
→ (‖v‖2 + 〈v〉2) 1

2 ,

v 
→ (‖∇v‖2 + 〈v〉2) 1
2 and v 
→ (‖�v‖2 + 〈v〉2) 1

2

are norms on H−1(�), L2(�), H1(�) and H2(�), respectively, which are equiv-
alent to the usual norms on these spaces; furthermore, ‖ · ‖−1 is a norm on {v ∈
H−1(�), 〈v〉 = 0} which is equivalent to the usual H−1-norm.

Throughout this paper, the same letters c and c′ denote (generally positive) constants
which may vary from line to line, or even in a same line.

3 Existence of Solutions

We first prove a local in time existence result.

Theorem 3.1 We assume that u0 is given such that u0 ∈ H1(�), 0 < 〈u0〉 < 1 and
0 < u0(x) < 1, a.e. x ∈ �. Then, there exists T0 = T0(u0) > 0 and a weak solution
u to (2.1)–(2.3) on [0, T0] such that u ∈ C([0, T0]; H1(�)w) ∩ L∞(0, T0; H1(�)) ∩
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L2(0, T0; H2(�)) and ∂u
∂t ∈ L2(0, T0; H−1(�)), where w denotes the weak topology.

Furthermore, 0 < u(x, t) < 1, a.e. (x, t) ∈ � × (0, T0).

Proof We actually prove the existence of a local in time solution to the auxiliary
problem (2.6)–(2.8) satisfying the regularity and weak separation property stated in
the theorem. Then, since u > 0 almost everywhere, it immediately follows that it is
solution to the original problem.

The idea, to prove existence, is to approximate the singular nonlinear term f by
regularized ones defined on the whole real line and then pass to the limit in the
approximated problems. For instance, one can consider the following C1-functions
defined on the real line and having a linear growth at infinity, N ∈ N:

fN (s) =

⎧
⎪⎨

⎪⎩

f (1 − 1
N ) + f ′(1 − 1

N )(s − 1 + 1
N ), s > 1 − 1

N ,

f (s), s ∈ [ 1
N , 1 − 1

N ],
f ( 1

N ) + f ′( 1
N )(s − 1

N ), s < 1
N ,

and replace f by fN in the equations. As this procedure is now standard for the
Cahn–Hilliard equation, we will not detail it here and will instead work directly on the
original equation (2.6) and refer the interested reader to [25]. Note that the approx-
imated functions satisfy (2.4), as well as a property similar to (2.5), with constants
which are independent of the approximation parameter N , at least when N is large
enough (see [25]). Therefore, the constants which appear below are independent of the
approximation parameter when considering approximated solutions. Also note that,
as the approximated functions go to infinity as s goes to infinity, the solutions to the
approximated problems may also exit [0, 1] and may, in particular, become negative,
as mentioned above. This explains why one only has a local in time existence result
when considering this scheme. We finally mention that the crucial step is to prove that
f (u) belongs to L2(� × (0, T0)), for some T0 > 0 (this allows to pass to the limit in
the nonlinear term in the approximated problems).

That said, we rewrite (2.6) in the following equivalent weaker form:

(−�)−1 ∂u

∂t
− �u + f (u) + (−�)−1g(u) = 0, (3.1)

d〈u〉
dt

+ 〈g(u)〉 = J , (3.2)

∂u

∂ν
= 0 on �, (3.3)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (3.4)

Note that (3.2) is obtained by formally integrating (2.6) over � and integrating by
parts.

The a priori estimates derived below will be formal. Note that, on the approximated
problems level, they can easily be justified by a standard Galerkin scheme.

First, note that

−k ≤ 〈g(u)〉 ≤ k
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(note indeed that g is bounded, so that so is 〈g(u)〉), so that

〈u0〉 + (J − k)t ≤ 〈u(t)〉 ≤ 〈u0〉 + (J + k)t,

as long as it exists. Assume that

2δ ≤ 〈u0〉 ≤ 1 − 2δ, δ ∈ (0,
1

2
).

It then follows from the above that there exists T0 = T0(δ, u0) > 0 such that

δ ≤ u(t) ≤ 1 − δ, t ∈ [0, T0]. (3.5)

Let us emphasize that, when working with the approximated problems, T0 can be
chosen independent of the approximation parameter, which is essential to pass to the
limit. Indeed, the equation for the spatial average of the approximated solutions (i.e.,
the equivalent of (3.2)) would be the same, so that the constants in the corresponding
estimates would also be the same.

We assume from now on that t ∈ [0, T0].
Let us multiply (3.1) by u and integrate over � and by parts. This gives

1

2

d

dt
‖u‖2−1 + ‖∇u‖2 + (( f (u), u)) + (((−�)−1g(u), u)) = 0. (3.6)

Note that it follows from (2.5) and (3.5) that

(( f (u), u)) = (( f (u), u)) ≥ c(‖ f (u)‖L1(�) +
∫

�

F(u) dx) − c′, c > 0, (3.7)

where the above constants depend on δ. Furthermore, we have

|(((−�)−1g(u), u))| ≤ c‖g(u)‖‖u‖ ≤ c‖∇u‖. (3.8)

We deduce from (3.6)–(3.8) that

d

dt
‖u‖2−1 + c(‖∇u‖2 + ‖ f (u)‖L1(�) +

∫

�

F(u) dx) ≤ c′, c > 0. (3.9)

Let us next multiply (3.1) by ∂u
∂t to obtain

1

2

d

dt
‖∇u‖2 + ‖∂u

∂t
‖2−1 + (( f (u),

∂u

∂t
)) + (((−�)−1g(u),

∂u

∂t
)) = 0. (3.10)

123



1828 Applied Mathematics & Optimization (2021) 84:1821–1842

Note that

(( f (u),
∂u

∂t
)) = (( f (u),

∂u

∂t
)) = d

dt

∫

�

F(u) dx − (( f (u),
d〈u〉
dt

)) (3.11)

= d

dt

∫

�

F(u) dx + Vol(�)(〈g(u)〉 − J )〈 f (u)〉

≥ d

dt

∫

�

F(u) dx − c‖ f (u)‖L1(�),

recalling that g is bounded. Furthermore,

|(((−�)−1g(u),
∂u

∂t
))| = ((g(u), (−�)−1 ∂u

∂t
))| ≤ c‖g(u)‖‖∂u

∂t
‖−1 ≤ c‖∂u

∂t
‖−1.

(3.12)

It thus follows from (3.10)–(3.12) that

d

dt
(‖∇u‖2 + 2

∫

�

F(u) dx) + ‖∂u

∂t
‖2−1 ≤ c‖ f (u)‖L1(�) + c′. (3.13)

Let us now add (3.9) and (3.13), multiplied by δ1 > 0 small enough, to find a
differential inequality of the form

d E1

dt
+ c(E1 + ‖ f (u)‖L1(�) + ‖∂u

∂t
‖2−1) ≤ c′, c > 0, (3.14)

where

E1 = ‖u‖2−1 + δ1(‖∇u‖2 + 2
∫

�

F(u) dx)

satisfies

E1 ≥ c‖∇u‖2 − c′, c > 0.

Multiplying (3.1) by −�u, we find, employing (2.4),

1

2

d

dt
‖u‖2 + ‖�u‖2 ≤ c0‖∇u‖2 − ((g(u), u)), (3.15)

which yields, noting that

|((g(u), u))| ≤ c‖u‖2 + c′,

the differential inequality

d

dt
‖u‖2 + ‖�u‖2 ≤ c‖u‖2 + c′. (3.16)
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Here, we have also used the fact that

‖∇u‖2 ≤ 1

2
‖�u‖2 + c‖u‖2,

which follows from standard elliptic regularity results and a proper interpolation
inequality.

Next, we deduce from (3.2) and (3.5) that

d

dt
〈u〉2 + 〈u〉2 ≤ c. (3.17)

Furthermore, it follows from (3.16) that

d

dt
‖u‖2 + c‖u‖2H2(�)

≤ c′(‖u‖2 + 〈u〉2) + c′′, c > 0. (3.18)

Summing finally (3.14), (3.17) and (3.18), multiplied by δ2 > 0 small enough, we
have a differential inequality of the form

d E2

dt
+ c(E2 + ‖u‖2H2(�)

+ ‖∂u

∂t
‖2H−1(�)

+ ‖ f (u)‖L1(�)) ≤ c′, c > 0, (3.19)

where

E2 = E1 + 〈u〉2 + δ2‖u‖2

satisfies

E2 ≥ c‖u‖2H1(�)
− c′, c > 0.

Note indeed that it follows from (3.2) and the boundedness of g that d〈u〉
dt is bounded.

Having this, we note that (3.1) yields

f (u) = �u − (−�)−1 ∂u

∂t
− (−�)−1g(u),

so that

‖ f (u)‖ ≤ c(‖�u‖ + ‖∂u

∂t
‖−1 + 1) (3.20)

and

‖ f (u)‖2L2(0,T0;L2(�))
≤ cE2(0). (3.21)
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Next, taking s = u and m = 〈u〉 in (2.5), it follows from (3.5) that

|〈 f (u)〉| ≤ c(( f (u), u)) + c′ = c(( f (u), u)) + c′

≤ c‖ f (u)‖‖u‖ + c′,

where the above constants depend on δ. Therefore,

‖ f (u)‖2L2(0,T0;L2(�))
≤ c(‖ f (u)‖2L2(0,T0;L2(�))

+
∫ T0

0
〈 f (u)〉2 dt)

≤ cE2(0) + c′E2(0)‖u‖2L∞(0,T0;L2(�))
+ c′′

≤ cE2
2(0) + c′

and

‖ f (u)‖L2(0,T0;L2(�)) ≤ c(E2(0) + 1). (3.22)

Asmentioned above, (3.22) is the crucial estimate to pass to the limit in the nonlinear
term and prove the existence of a local in time solution. The rest of the proof is standard
and we omit the details. ��
Remark 3.2 The separation property from the singular points 0 and 1 given in the
above theorem says that there will be no zone where the metabolite under study is
totally absent; there will always be at least some trace of it.

Remark 3.3 For a regular, in particular, cubic, nonlinear term f , we can similarly prove
the existence, and also the uniqueness, of the local in time solution. Note however that,
as already mentioned, the solution may become negative (or strictly larger than one),
in which case, the equation may become singular. Consequently, we are not able to
prove a global in time existence result in that case.

Theorem 3.1 can be extended to more general functions J = J (x, t) as follows.

Theorem 3.4 We assume that the assumptions of Theorem 3.1 hold and that J ∈
L∞(� × (0, T )), T > 0. Then, the assertions of Theorem 3.1 still hold.

Proof Note that the weaker formulation of the problem now reads

(−�)−1 ∂u

∂t
− �u + f (u) + (−�)−1g(u) = (−�)−1 J , (3.23)

d〈u〉
dt

+ 〈g(u)〉 = 〈J 〉, (3.24)

∂u

∂ν
= 0 on �, (3.25)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (3.26)
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We can then repeat the estimates made above, with minor changes. In particular,
when estimating the spatial average of u, we obtain

〈u0〉 − (‖J‖L∞(�×(0,T )) + k)t ≤ 〈u(t)〉 ≤ 〈u0〉 + (‖J‖L∞(�×(0,T )) + k)t .

Also note that, e.g., when multiplying (3.23) by ∂u
∂t , we have to estimate the term

(((−�)−1 J , ∂u
∂t )). To do so, we write

(((−�)−1 J ,
∂u

∂t
)) = (((−�)−

1
2 J , (−�)−

1
2
∂u

∂t
))

≤ c‖J‖‖∂u

∂t
‖−1 ≤ ε‖∂u

∂t
‖2−1 + cε, ∀ε > 0.

��
We then have the following.

Theorem 3.5 Let us assume that 0 ≤ J k′+1
k ≤ 1 and let u be a local in time weak

solution as in Theorem 3.1. Then, it is global in time, i.e., defined on [0, T ], ∀T > 0.

Proof Let u be a local in time weak solution on [0, T ], T > 0 given, and T � be its
maximal time of existence. Let us assume that T � < T . Then, necessarily, u belongs
to [0, 1] for t ∈ [0, T �). In particular, this yields

ku

k′ + 1
≤ g(u) ≤ ku

k′

and

J − k

k′ 〈u〉 ≤ J − 〈g(u)〉 ≤ J − k

k′ + 1
〈u〉.

Therefore, noting that J is nonnegative and recalling that J k′+1
k ≤ 1,

〈u0〉e− k
k′ t ≤ 〈u(t)〉 ≤ 〈u0〉e− k

k′+1
t + J

k′ + 1

k
(1 − e− k

k′+1
t
) (3.27)

≤ 〈u0〉e− k
k′+1

t + 1 − e− k
k′+1

t
, t ∈ [0, T �).

Finally, it follows from (3.27) that there exists δ ∈ (0, 1) (which can be taken
independent of T �) such that

δ < 〈u(t)〉 < 1 − δ, ∀t ∈ [0, T �).

Note indeed that, setting

ϕ(t) = 〈u0〉e− k
k′+1

t + 1 − e− k
k′+1

t
,
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then

ϕ′(t) = k

k′ + 1
(1 − 〈u0〉)e− k

k′+1
t ≥ 0.

Therefore, ϕ is monotone increasing and takes values in [ϕ(0), ϕ(T )] = [〈u0〉, (〈u0〉−
1)e− k

k′+1
T + 1] ⊂ (0, 1). The lower bound is straightforward. This yields that, nec-

essarily, the solution is global in time, since, otherwise, owing to continuity, it can be
extended (recall that T � < T ). ��

Remark 3.6 (i) Note that the above argument does not work for the approximated
problems (and regular nonlinear terms f ).

(ii) In the case of lactate exchanges in glial cells, possible biologically relevant values
are (see, e.g., [16] and the references therein)

k = 0.01mM.s−1, k′ = 3.5mM,

J = 5.7.10−3mM.s−1,

so that the condition J k′+1
k ≤ 1 is a restrictive one. It is however satisfied if one

considers a sufficiently small external flux J . Note nevertheless that our equation
should be regarded as only a very simplified model in this situation. More concrete
models should account for different energy mechanisms (e.g., glucose and gluta-
mate/glutamine) or for the tumor growth in case of cancerous cells. Such more
elaborate models will be studied elsewhere.

(iii) Note that, since g is monotone increasing,

d〈u〉
dt

∈ [J − k

k′ + 1
, J ].

Therefore, if J = 0, then 〈u〉 is monotone decreasing and, since it belongs to
[0, 1], it converges to some limit. A similar situation arises when J − k

k′+1 ≥ 0, in
which case 〈u〉 is monotone increasing. Also note that it follows from (3.27) that,
when J = 0, then 〈u〉 converges to 0 as time goes to +∞, as expected.

We aslo have the following result, for nonconstant functions J = J (x, t).

Theorem 3.7 We assume that the assumptions of Theorem 3.4 hold and that J ∈
[0, J �], where J � k′+1

k ≤ 1. Then, a solution as in Theorem 3.4 is global in time, i.e.,
defined on [0, T ].

Proof The proof is similar to that of Theorem 3.5, noting that we now have

− k

k′ 〈u〉 ≤ J − 〈g(u)〉 ≤ J � − k

k′ + 1
〈u〉,
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so that

〈u0〉e− k
k′ t ≤ 〈u(t)〉 ≤ 〈u0〉e− k

k′+1
t + J � k′ + 1

k
(1 − e− k

k′+1
t
)

≤ 〈u0〉e− k
k′+1

t + 1 − e− k
k′+1

t
.

��
Remark 3.8 In the study of brain metabolites concentrations in the circadian rhythm,
one considers in [18] functions J of the form

J = a sin2(bt + c), a, b, c > 0.

The condition in Theorem 3.7 on the parameters is again restrictive when compared
to the numerical values taken in [18].

Remark 3.9 In the case of a logarithmic nonlinear term f , uniqueness is an open
problem (see however the next section below for a partial uniqueness result).

4 Regularity of Solutions

We assume in this section that J is a constant.
We have the following.

Theorem 4.1 We assume that the assumptions of Theorem 3.5 hold and that 0 <

J k′+1
k < 1. Then, any weak solution u to (2.1)–(2.3) satisfies

∂u

∂t
∈ L∞(r , T ; H−1(�)) ∩ L2(r , T ; H1(�)),

∀r < T , r > 0 and T > 0 given.

Proof The estimates below are again formal, but they can also be justified within a
Galerkin scheme for the approximated problems and Theorem 3.5.

Rewrite the equations in the equivalent form

∂u

∂t
+ g(u) − J = �μ, (4.1)

μ = −�u + f (u), (4.2)
∂u

∂ν
= ∂μ

∂ν
= 0 on �. (4.3)

First, note that it follows from (4.2) that

〈μ〉 = 〈 f (u)〉,
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so that, owing to the regularity obtained in the previous section,μ ∈ L2(0, T ; H1(�)),
since

μ = −(−�)−1 ∂u

∂t
− (−�)−1g(u). (4.4)

Next, let us multiply (4.1) by ∂μ
∂t to have

((
∂u

∂t
,
∂μ

∂t
)) = −1

2

d

dt
‖∇μ‖2 − ((g(u) − J ,

∂μ

∂t
)). (4.5)

Let us then differentiate (4.2) with respect to time to obtain

∂μ

∂t
= −�

∂u

∂t
+ f ′(u)

∂u

∂t
. (4.6)

Multiply (4.6) by ∂u
∂t to find

((
∂u

∂t
,
∂μ

∂t
)) = ‖∇ ∂u

∂t
‖2 + (( f ′(u)

∂u

∂t
,
∂u

∂t
)) ≥ ‖∇ ∂u

∂t
‖2 − c0‖∂u

∂t
‖2, (4.7)

owing to (2.4). Combine (4.5) and (4.7) to have

1

2

d

dt
‖∇μ‖2 + ‖∇ ∂u

∂t
‖2 + ((g(u) − J ,

∂μ

∂t
)) ≤ c0‖∂u

∂t
‖2 (4.8)

≤ 1

2
‖∇ ∂u

∂t
‖2 + c(‖∂u

∂t
‖2−1 + 〈∂u

∂t
〉2),

owing to a proper interpolation inequality. Now, note that

((g(u) − J ,
∂μ

∂t
)) = d

dt
((g(u) − J , μ)) − ((g′(u)

∂u

∂t
, μ)). (4.9)

Let us then combine (4.8) and (4.9) to obtain

d

dt
(‖∇μ‖2 + ((g(u) − J , μ))) + ‖∇ ∂u

∂t
‖2 ≤ c‖∂u

∂t
‖2H−1(�)

+ c′‖∂u

∂t
‖‖μ‖

≤ 1

2
‖∇ ∂u

∂t
‖2 + c(‖∂u

∂t
‖2H−1(�)

+ ‖μ‖2),

noting that g′ is bounded, so that

d

dt
(‖∇μ‖2 + ((g(u) − J , μ))) + 1

2
‖∇ ∂u

∂t
‖2 ≤ c(‖∂u

∂t
‖2H−1(�)

+ ‖μ‖2). (4.10)

Set finally

� = ‖∇μ‖2 + ((g(u) − J , μ)).
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Note that, since g′ ≥ 0,

((g(u) − J , μ)) = ((g(u) − J ,−�u + f (u))) = ((g′(u)∇u,∇u)) + ((g(u) − J , f (u))

≥ ((g(u) − J , f (u))).

Also note that

g(u) − J = k − J

k′ + u
(u − Jk′

k − J
),

so that it follows from (2.5) (indeed, 0 < J k′+1
k < 1 implies that k > J and 0 <

Jk′
k−J < 1) that

((g(u) − J , f (u))) ≥ c
∫

�

F(u) dx − c′, c > 0.

Therefore,

� ≥ ‖∇μ‖2 − c, c ≥ 0,

and an application of the uniform Gronwall’s lemma yields that

μ ∈ L∞(r , T0; H1(�)),

r > 0 given, owing also to (3.19) and (4.4) which allow to see that the assumptions
of this lemma indeed hold.

The result finally follows from (4.4), recalling that d〈u〉
dt is uniformly bounded and

extending the solution. ��
The regularity obtained in Theorem 4.1 is the key regularity for proving a strict

separation of the order parameter u (and not just its spatial average) from the pure
states 0 and 1 (see [25]). More precisely, we have the following.

Theorem 4.2 We assume that n = 1 or 2 and that the assumptions of Theorems 3.5
and 4.1 hold. Then, there exists δ ∈ (0, 1) depending on the H1(�)-norm of u0 such
that

δ ≤ u(x, t) ≤ 1 − δ, for almost all (x, t), x ∈ �, t ≥ r ,

r > 0 given.

The proof of this theorem is very similar to those given in [25], Chapter 4 (see also
[14,27]), and we omit the details.

Remark 4.3 (i) This result says that, as soon as time is positive, the nonlinear term
becomes regular (and also bounded). Note that this then allows to prove additional
regularity on u and, in particular, that the solution is strong as soon as time is
positive.
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(ii) The strict separation is not known in three space dimensions, already for the
original Cahn–Hilliard equation, unless we make some growth assumptions on
the singular nonlinear term f which are not satisfied by the relevant logarithmic
ones (see [27]).

Remark 4.4 From a biological point of view, the strict separation property says that, in
the phase separation process, there is always some amount (and not just some trace)
of the metabolite in, say, all regions of the cell.

A consequence of the above results is the following.

Corollary 4.5 We assume that n = 1 or 2 and that u0 ∈ H3(�), with ∂u0
∂ν

= 0 on �

and δ ≤ u0(x) ≤ 1 − δ, a.e. x ∈ �, δ ∈ (0, 1). Then, a solution as given in Theorem
4.1 is unique.

Proof We first note that the regularity on u0 implies that ∂u
∂t (0) ∈ H−1(�) and, thus,

μ(0) ∈ H1(�), allowing us to take r = 0 in the above results.
Next, having the strict separation property, we can essentially proceed as for the

original Cahn–Hilliard equation with a regular nonlinear term to prove uniqueness, as
well as the continuous dependence with respect to the initial data (say, with respect
to the H−1(�)-norm). Let us just mention that the difference, when compared to the
original Cahn–Hilliard equation, is that we have to handle a term of the form

(( f (u1) − f (u2), 〈u1 − u2〉)),

where u1 and u2 are two solutions which satisfy the strict separation property (in
the case of the original Cahn–Hilliard equation, this term does not appear, due to the
conservation of the spatial average of the order parameter; see [25], also for several
other variants of the Cahn–Hilliard equation). Without the strict separation property,
we would not know how to estimate this term, whereas, here, noting that the nonlinear
term f is globally Lipschitz continuous when considering two solutions which are
strictly separated from the pure states, we can write

| f (u1) − f (u2)| ≤ c|u1 − u2|.

��
Remark 4.6 (i) Having the strict separation property and uniqueness, we can study

the asymptotic behavior of the associated dynamical system. In particular, we can
prove the existence of finite dimensional attractors, meaning, roughly speaking,
that the limit dynamics can be described by a finite number of degrees of freedom.
We refer the interested reader to, e.g., [25,28,34] for discussions on this.

(ii) Another interesting problem is the convergence of single trajectories to steady
states. Note that, already for the original Cahn–Hilliard equation, such a question
is not a trivial one, since one may have a continuum of steady states (see [33]).
Here, due to the additional symport term, the problem is particularly challenging
and we cannot proceed as in [33].
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(iii) When k > J , one has a unique spatially homogeneous equilibrium given by

ue = k′ J
k − J

.

In particular, when J = 0, ue = 0 and we already saw that 〈u(t)〉 tends to 0 as
t goes to +∞. Proving a full stability result is however challenging and will be
studied elsewhere.

5 A SecondModel

We consider in this section the following initial and boundary value problem:

∂u

∂t
+ �2u − � f (u) + αu + ku

k′ + u
= J , α, k, k′ > 0, (5.1)

∂u

∂ν
= ∂�u

∂ν
= 0 on �, (5.2)

u|t=0 = u0. (5.3)

We again assume that J is a constant. When the symport term does not appear and
J = 0, we recover the Cahn–Hilliard–Oono equation.

Considering again a modified problem, namely,

∂u

∂t
+ �2u − � f (u) + αu + g(u) = J , (5.4)

∂u

∂ν
= ∂�u

∂ν
= 0 on �, (5.5)

u|t=0 = u0, (5.6)

we can prove the following.

Theorem 5.1 We assume that u0 is given such that u0 ∈ H1(�), 0 < 〈u0〉 < 1 and
0 < u0(x) < 1, a.e. x ∈ �. Then, there exists T0 = T0(u0) > 0 and a weak solution
u to (5.1)–(5.3) on [0, T0] such that u ∈ C([0, T0]; H1(�)w) ∩ L∞(0, T0; H1(�)) ∩
L2(0, T0; H2(�)) and ∂u

∂t ∈ L2(0, T0; H−1(�)). Furthermore, 0 < u(x, t) < 1, a.e.
(x, t) ∈ � × (0, T0).

Proof We first note that the equation for the spatial average of the order parameter
now reads

d〈u〉
dt

+ α〈u〉 = J − 〈g(u)〉,

which yields

〈u0〉e−αt + J − k

α
(1 − e−αt ) ≤ 〈u(t)〉 ≤ 〈u0〉e−αt + J + k

α
(1 − e−αt ), (5.7)
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allowing us to deduce the existence of T0 > 0 such that, for t ∈ [0, T0],

δ ≤ 〈u(t)〉 ≤ 1 − δ, δ ∈ (0,
1

2
).

Here, we again assume that 2δ ≤ 〈u0〉 ≤ 1 − 2δ.
We then consider the weaker formulation

(−�)−1 ∂u

∂t
− �u + f (u) + α(−�)−1u + (−�)−1g(u) = 0, (5.8)

∂u

∂ν
= 0 on �, (5.9)

u|t=0 = u0. (5.10)

Let us multiply (5.8) by ∂u
∂t to obtain, for t ∈ [0, T0],

1

2

d

dt
‖∇u‖2 + ‖∂u

∂t
‖2−1 + (( f (u),

∂u

∂t
)) + α

2

d

dt
‖u‖2−1 (5.11)

+(((−�)−1g(u),
∂u

∂t
)) = 0.

Note that

(( f (u),
∂u

∂t
)) = (( f (u),

∂u

∂t
)) = d

dt

∫

�

F(u) dx − (( f (u),
d〈u〉
dt

)) (5.12)

= d

dt

∫

�

F(u) dx + Vol(�)(〈g(u)〉 + α〈u〉 − J )〈 f (u)〉

≥ d

dt

∫

�

F(u) dx − c‖ f (u)‖L1(�),

since 〈u〉 belongs to [0, 1]. It thus follows from (5.11)–(5.12) that, for t ∈ [0, T0],

d

dt
(‖∇u‖2 + α‖u‖2−1 + 2

∫

�

F(u) dx) + ‖∂u

∂t
‖2−1 ≤ c‖ f (u)‖L1(�) + c′. (5.13)

The rest of the proof is similar to that of Theorem 3.1 and we omit the details. ��
Remark 5.2 (i) Note that if J ≥ k and J + k ≤ α, then it follows from (5.7) that

δ ≤ 〈u(t)〉 ≤ 1 − δ for all times (in a finite time interval), so that the solution is
actually global in time.

(ii) When k = J = 0, it follows from (5.7) that 〈u〉 ∈ (0, 1) for all times and we
recover the global in time existence for the Cahn–Hilliard–Oono equation. This
slightly simplifies the proof given in [25].

We then have the following theorem which improves the global existence result
mentioned in the above remark.
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Theorem 5.3 Let us assume that 0 ≤ J ≤ α and let u be a local in time weak solution
as in Theorem 5.1. Then, it is global in time.

Proof We proceed as in the proof of Theorem 3.5.
Let again u be a local in time weak solution on [0, T ], T > 0 given, and T � be its

maximal time of existence. Assume that T � < T . Noting once more that u belongs to
[0, 1] for t ∈ [0, T �), it follows that

0 ≤ g(u) ≤ k

k′ + 1
,

so that, proceeding as above,

〈u0〉e−αt + 1

α
(J − k

k′ + 1
)(1 − e−αt ) ≤ 〈u(t)〉 ≤ 〈u0〉e−αt + J

α
(1 − e−αt ),

which allows us to conclude when J k′+1
k ≥ 1, i.e., J ≥ k

k′+1 . When J k′+1
k ≤ 1, we

can write

−(
k

k′ + α)〈u〉 ≤ J − α〈u〉 − 〈g(u)〉 ≤ J − k

k′ + 1
〈u〉,

yielding

〈u0〉e−( k
k′ +α)t ≤ 〈u(t)〉 ≤ 〈u0〉e− k

k′+1
t + J

k′ + 1

k
(1 − e− k

k′+1
t
).

We can again conclude as in the proof of Theorem 3.5. ��
Remark 5.4 Note that the value of J given in Remark 3.6, (ii), is compatible with the
condition J ≤ α, for a rather small value of α. This is no longer the case for the values
considered in [18], with a proper extension of the results when J is nonconstant,
as in Sect. 3. In that case, indeed, α should be large, i.e., less but close to 1. It is
interesting to note here that, as far as the original Cahn–Hilliard theory is concerned,
the dynamics of the Cahn–Hilliard–Oono equation is close, in a proper sense, to that
of the Cahn–Hilliard equation when α is small (see [25]).

We next have the following.

Theorem 5.5 We assume that the assumptions of Theorem 5.3 hold and that k > εJ ,
0 < εJk′

k−εJ < 1 and (1− ε)J < α, ε ∈ (0, 1). Then, any weak solution u to (5.1)–(5.3)
satisfies

∂u

∂t
∈ L∞(r , T ; H−1(�)) ∩ L2(r , T ; H1(�)),

∀r < T , r > 0 and T > 0 given.
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Proof We proceed as in the Proof of Theorem 4.1. The only difference here is that

� = ‖∇μ‖2 + ((g(u) + αu − J , μ))

and we have to estimate

((g(u) + αu − J , f (u)))

from below. Writing

g(u) + αu − J = g(u) − εJ + α(u − (1 − ε)
J

α
),

it follows that

((g(u) + αu − J , f (u))) ≥ c
∫

�

F(u) dx − c′, c > 0,

which finishes the proof.

We finally have the following.

Theorem 5.6 We assume that n = 1 or 2 and that the assumptions of Theorems 5.3
and 5.5 hold. Then, there exists δ ∈ (0, 1) depending on the H1(�)-norm of u0 such
that

δ ≤ u(x, t) ≤ 1 − δ, for almost all (x, t), x ∈ �, t ≥ r ,

r > 0 given.

Remark 5.7 Let us assume that J = 0 and let us consider the spatially homogeneous
equilibrium ue = 0. Then, multiplying (5.1) by u, we obtain

1

2

d

dt
‖u‖2 + ‖�u‖2 + α‖u‖2 ≤ c0‖∇u‖2 + k

k′ ‖u‖2.

Let λ1 be the first eigenvalue of the operator −� associated with Neumann boundary
conditions and acting on functionswith null spatial average.Writing (see, e.g., [25,34])

‖�u‖2 = ‖(−�)u‖2 ≥ λ1‖(−�)
1
2 u‖2 = λ1‖∇u‖2,

we find

1

2

d

dt
‖u‖2 + (λ1 − c0)‖∇u‖2 + (α − k

k′ )‖u‖2 ≤ 0.
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Therefore, if c0 ≤ λ1 and k
k′ ≤ α, then 0 is stable. Furthermore, if k

k′ < α, then we
have a differential inequality of the form

d

dt
‖u‖2 + c‖u‖2 ≤ 0, c > 0,

and it follows from Gronwall’s lemma that 0 is asymptotically stable. Note however
that the condition c0 ≤ λ1 is a restrictive one.
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